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J. Phys. A: Math. Gen. 15 (1982) 3373-3377. Printed in Great Britain 

COMMENT 

On the resonance effect of the nonlinear string equation 

A Kh Fridman 
Heat and Mass Transfer Institute, BSSR Academy of Sciences, Minsk, USSR 

Received 27 April 1982 

Abstract. Based on the third-order operator factorisation, the resonance interaction of 
solitons for the nonlinear string equation with a positive dispersion term is considered 
and operators for creation and annihilation of a resonance triad are constructed. 

Let us consider the nonlinear string equation (Zakharov and Shabat 1974) 

3 a2u a2u 1 a4u 3 a’ 
4 at  ax2 4ax 4 ax 
- p 2 ~ + A - + - a + -  T ( U  )=O 

which allows the Lax representation 

p aL/at =LA - AL 

where 

A = a2/ax2 + a4/ax, U = a4/ax. (4) 

The second-order operator factorisation (Fridman and El’yashkevich 1979) has 
been considered that permits determination of the operators of creation and annihila- 
tion of solitons and the scattering operator for collision of an arbitrary wave disturbance 
with a soliton. 

The present paper realises this method for the third-order operator (3). 
Consider factorisation of the L operator 

Lo - a = HOlHlO 

where 

= a/ax + av/ax, 

Hol=T-----(-) a2 av a 1 av ’ - - -+-P-+A. 1 a2v 3 av 
ax ax ax 2 ax 2 ax2 2 at (7) 

Expansion of equations (5)-(7) allows us to build the following equation coupled 
with (l), 

,a2v a2v a4v 
3p - + 4 A 7 + 7 - 6  

at2 ax ax 
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for which the Lax representation (2) may be realised by the (L,  A) pair 

where A .  and A have the form of the A operator for the initial equation and depend 
on 

1 av a40 - azo 2- av a~ - - - (3p)- '7+2(3p)- ' ( - )  azo av -4A(3@)- - -a ,  
at ax at at ax ax ax ax 

3 

1 av a41 a2v au a0 a3 U av 
at ax at at ax ax ax ax 

3 

-= ---2- - - (38)- '7+2(3@)- ' ( - )  -4h(3P)- --a. 

Expressions (lo)-( 13) follow directly from the representation 

aL2/at = L2A -AL2 (14) 

and are recognised as the Miura transformations which couple two solutions of equation 
(1) with the solution of equation (8). This transformation can be written in the operator 
form 

Lo - a = HOlHlO , L1-CY =Hl&ol. (15) 

Elimination of U in equations (lo)-( 13) gives the Backlund transformation for equa- 
tion (1). 

As in the case of the second-order operator the former solution a&/ax, a4,/at 
does not determine unambiguously the solution of equation (8); however, the asymptote 
p J3 &/ax (the multiplier p J 3  is taken for convenience) is determined now by the 
third-order algebraic equation 

(16) 3 1  k - z k - a = O .  

Later on two cases are considered, 

(17) 
the difference between which is attributed to thesign of the dispersion term. In the 
case of a positive dispersion term for la1 < 1/6J12 we number the roots of equation 
(16) as follows: k l  < k 2  < k 3 .  Now let us choose any pair of the roots of equation (16) 
ki, ki. Without loss of generality we assume that the former solution does not involve 
solitons. A further consideration can be carried out similarly to the Korteweg-de 
Vries equation. Consider three different solutions of equation (8 j having different 
asymptotes at infinity, 

1 (2) p z = - 3 , h = ; ,  (1) P Z = 3 , h  = - z ;  

au au 
ax ax 

(3) -(-a, t )  = ki, -(+m, t )  = kj. 
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Such ambiguity of the Miura transformation yields three possible factorisations of 
the L operator 

a4l/ax has the following asymptotic form at t -+ TOO' 

and describes the process of collision of the disturbance &$'"/ax with a soliton of 
equation (1). The coefficients a4';"/ax and a4Yt/ax of the operators L: and L$' have 
the asymptotic forms 

a+'l"/ax + adin /ax, t + -CO, (25) 

ab,Y/ax -+ a4OU'/ax, t ++a. (26) 
The unitary scattering operator S which describes the process of collision of the 
disturbance 84 '"/ax with a soliton is determined similarly to the Korteweg-de Vries 
equation, 

s*';" = *?' (27) 

From (19)-(29) the equivalent definition follows: 

SHi, = Ho,t. (30) 
In the case of a negative dispersion term at /a1 > 1 / 6 J E  a pair of conjugate roots 
of equation (16) is chosen. In other respects the process of collision is described 
similarly. 

The factorisation ( 5 )  allows the following generalisation, 

= a/ax +avi-,/ax, (35) 
where avi-l/ax in the case of a positive dispersion term has the asymptote (ki, k;) 
or (kh, k;) composed of the roots of equation (16) at a =ai  with max(k1, k i ) s  
min(k4, k:) for all ( i , j ) .  In the case of a negative dispersion term the asymptote is 
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prescribed by the pair of conjugate roots. If the Lo operator has no solutions then 
the index 'i' describes the number of solitons in the system 

Hii-l+i-l= +i, Hi-1 i + i  = +i-1. (36) 

Then the introduced operators Hi-l can be considered as those of creation 
and annihilation of solitons, respectively. In the case a 1  = a2 = a3 . , . = a,, = 1/6J12 
the solitons degenerate into rational solitons, the explicit form of which can be obtained 
by the limiting transition in formulae (37)-(38). 

Application of formulae (10)-(13) and (31)-(35) for a vacuum a&/ax = 0 allows 
the n -soliton solution to be built, which after simple algebraic manipulations can be 
reduced to the following form (Fridman 1978). 

a4 a2 
-= ax - 2 ~ l n f ( x ,  t ) ,  (37) 

(kf  - k ( ) ( k i  - k i )  
A . .  = l # m # n ,  

I' (k ; -kL)(k i -k{) '  

77, = k l ( x  -v l t )+vP,  k, = k;  - k A, U, = Jjk;. 

In contrast to the Korteweg-de Vries equation, equation (1) with a positive dispersion 
term permits resonance interaction of solitons (Fridman 1978) when two solitons 
submerge into one or vice versa. In this case A,,,,-I vanishes and 

a n  =an-1, k2n-l = max(k;, k;) = kz" = min(ki, k i ) .  
Designate the corresponding three solutons of equation (16) at a = a,, in terms of 
k& k;, k;. Then at t -* -co_there are two solitons, with one moving at the velocity 
J3k;  and the other at v'3k;. At t++a these two solitons submerge into one 
moving at the velocity h k ; .  The process of vanishing A,,,,-l is written as a resonance 
condition 

In the case of resonance interaction the 
sation, 

,, operator allows the following factori- 

where the product of operators 

is the operator of creation of a resonance triad, while 

is the operator of annihilation of the resonance triad. Not only successive generation 
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of solitons (k?y kz) and (kgy k;) allows creation of the resonance triad. A choice of 
the asymptote av,/ax in the form ( k l ,  k3) does not determine av,/ax unambi uously; 

constant at t + --CO. With the asymptote being equal to kz, the operator of creation 
of a resonance triad has the form of (6), and that of annihilation, the form of (7) .  

one should prescribe an intermediate asymptote on the characteristic (x - 5- 3 k l t )  = 
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